Niobium Oxides as Cathode Electrocatalysts for Platinum-free Polymer Electrolyte Fuel Cells

Ryohji Ohnishi, Yohei Takahashi, Atsushi Takagaki, Jun Kubota, and Kazunari Domen Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656

(Received May 8, 2008; CL-080473; E-mail: domen@chemsys.t.u-tokyo.ac.jp)

Niobium oxides are shown to exhibit oxygen reduction reaction (ORR) activity with high onset potential (ca. 0.85 V vs. NHE) comparable to that for Pt-based catalysts along with excellent stability under acidic conditions.

Polymer electrolyte fuel cells (PEFCs) have attracted considerable attention as a clean power source for electronic devices and are also promising for use in fuel cell vehicles (FCVs) and residential cogeneration systems.¹ However, a major obstacle preventing the widespread commercialization of PEFCs is the high consumption of Pt and related materials as electrocatalysts, which are limited natural resources.2,3 The commercialization of PEFCs is dependent on the discovery of suitable electrocatalysts based on naturally abundant elements.

A number of transition-metal oxide and oxynitride compounds have relatively high activities as cathode electrocatalysts,^{2–8} and transition-metal oxynitrides such as TaO_xN_y and ZrO_xN_y have recently been demonstrated to reduce oxygen at a high onset potential of ca. 0.8 V vs. NHE (normal hydrogen electrode).^{4,5} Oxides such as TiO_x and ZrO_x have also been found to exhibit ORR activity.^{7,8} As high onset potential is essential in PEFCs in order to ensure small voltage loss at the cathode, these oxide and oxynitride materials are potentially applicable as electrocatalysts in PEFCs in place of existing Pt-based electrocatalysts.

In the present study, niobium oxide is demonstrated to be an effective cathode electrocatalyst with low solubility under acidic conditions. The ORR activities of three niobium oxides $(Nb₂O₅)$, NbO2, and NbO) are examined, and structural factors affecting ORR activity are investigated.

Nb2O5, NbO2, and NbO were purchased from Kanto Chemical, Strem Chem, and CBMM, respectively, and used as received. A small amount of the oxide (50 mg) was dispersed with 5 mg of carbon black (Vulcan XC-72R) in a mixture of acetylacetone (2.4 mL) and $5 \text{ wt } \%$ Nafion/isopropanol $(0.6$ mL). A 50- μ L aliquot of the suspension was then dropped onto graphite paper $(1 \times 1 \text{ cm}^2)$; TGP-H-120, Toray) and then dried at 393 K in air. Electrochemical measurements were performed in aqueous $0.1 M H_2SO_4$ solution at room temperature with an Ag/AgCl reference electrode and graphite paper counter electrode. After bubbling with Ar to remove dissolved O_2 for 30 min, oxidation and reduction cycles were repeated between 0.05 and 1.2 V vs. NHE at a scan rate of 5 mV s^{-1} . A total of 10 cycles was performed in order to ensure the sample electrode had stabilized. Linear sweep voltammograms were recorded after bubbling with Ar or O_2 gas for 30 min.

Neither $Nb₂O₅$, which is the most stable of the niobium oxides, nor NbO, which is the most reduced state of niobium oxides, displayed activities for ORR. However, $NbO₂$ exhibited remarkable ORR activity, as indicated by the voltammograms

Figure 1. Potential–current curve for $NbO₂$ powder under Ar and O_2 atmospheres in 0.1 M H₂SO₄. Sweep rate was 5 mV s⁻¹.

shown in Figure 1. Cathodic current indicative of ORR appears at 0.85 V vs. NHE. Commercial Pt/carbon black catalysts become active for ORR at 1.0 to 0.95 V vs. NHE. The difference in over-potential between $NbO₂$ and the commercial Pt catalyst is, therefore, only 0.10 V, and it can be expected that the performance of NbO2-based catalysts will approach that of the Pt-based catalysts with further refinement.

The stability of $NbO₂$ under acidic conditions was also investigated. $NbO₂$ powder or Pt black (Aldrich) powder was immersed in aqueous $0.1 M H₂SO₄$ solution at room temperature, and after 24 h the leaching of metal ions into the filtrate was evaluated by inductively coupled plasma mass spectroscopy (ICP-MS). The measured solubility of Pt black was 0.38 μ mol L⁻¹, consistent with previous reports.^{2,3,7} However, NbO₂ was considerably more tolerant of strong acid as measured as 0.05μ mol L⁻¹. Niobium oxides are known to be stable under passivation treatment.⁹ X-ray photoelectron spectroscopy (XPS) reveals that the surface of $NbO₂$ consists predominantly of Nb⁵⁺ ions (87%).¹¹ NbO₂ is, therefore, considered sufficiently stable for use under the acidic conditions in a PEFC.

To clarify the origin of the ORR activity exhibited by the Nb-based catalyst, thin films of NbO_x were prepared on glassy carbon plates $(10 \times 10 \text{ mm}^2)$ by reactive radio-frequency (RF) magnetron sputtering from an Nb metal plate under various partial pressures of O_2 . Sputtering was performed for 30 min at 100-W RF power with the substrate maintained at 723 K. The Ar partial pressure in the sputtering chamber was maintained at 8×10^{-2} Pa. Sputtering ensures good electric contact between the NbO_x films and the carbon substrates, eliminating the effect of irregular electric contact in the case of NbO_x powders on the graphite paper. The thickness of the thin films thus prepared is estimated to be ca. $1 \mu m$ based on scanning electron microscopy (SEM) observations. The X-ray diffraction (XRD) patterns of the NbO_x films are shown in Figure 2. The crystalline structures of these thin films vary with increasing O_2 partial pressure, from

Figure 2. XRD patterns of sputtered NbO_x films prepared at various O_2 partial pressures.

Nb metal to Nb_2O_5 . At O_2 partial pressures of 1×10^{-2} to 4×10^{-2} Pa, the samples change structure from Nb₆O–NbO,¹⁰ to $NbO₂$ and $Nb₂O₅$. The film prepared at the highest $O₂$ pressure was amorphous and is speculated to consist of amorphous $Nb₂O₅$. XPS, however, reveals only $Nb⁵⁺$ species on the surfaces of the $NbO₂$ and $Nb₂O₅$ films.

Voltammograms of these film electrodes under O_2 are shown in Figure 3. The sample prepared at the lowest O_2 partial pressure produces no ORR current. Samples displaying NbO₂ and $Nb₂O₅$ XRD patterns, however, produce significant ORR current. The highest potential for ORR, ca. 0.70 V vs. NHE, was obtained for the most oxidized thin film, which had an amorphous structure. In the case of electrodes prepared from powder catalysts, only the $NbO₂$ powder produced ORR current. However, the results obtained for the sputtered NbO_x films clearly indicate that the bulk structure of NbO_x is not relevant to the appearance of ORR activity. Rather, the production of ORR current appears to be dependent on the formation of a particular surface structure, which can form on $NbO₂$, $Nb₂O₅$, and amorphous Nb2O5. The lack of observed ORR current for the $Nb₂O₅$ and NbO powders thus appears to be attributable to inadequate electrical contact between the powder particles and the substrate. The NbO₂ powders are considered to provide good electrical contact with the substrate because of the particle shapes or surface properties. The surface of the $NbO₂$ powder (Figure 1) was also found by XPS to be predominantly covered with $Nb⁵⁺$ species, which were considered to form the active sites.

In summary, niobium oxide was demonstrated to exhibit ORR activity with onset reduction potential comparable to that achieved using a Pt-based catalyst. Furthermore, niobium oxide was found to be remarkably stable under acidic conditions, which is a requirement for application in PEFCs. Using NbO_x films sputtered onto glassy carbon plates, it was found that the

Figure 3. Voltammograms of NbO_x films under Ar and $O₂$ atmosphere in 0.1 M H_2SO_4 . Sweep rate was 5 mV s^{-1} .

surface state is more important to achieving ORR activity than the bulk state. The activity was found to be dependent on the presence of $Nb⁵⁺$ species, and active surfaces were successfully produced on $NbO₂$, $Nb₂O₅$, and amorphous $Nb₂O₅$ but not on metallic Nb. Future research on Nb-based materials will involve the development of nitrogen-containing materials and refinement of the preparation technique, with the results to be reported in forthcoming papers.

References and Notes

- 1 B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345.
- 2 H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal., B 2005, 56, 9.
- 3 R. Borup, J. Meyers, B. Pivovar, et al., Chem. Rev. 2007, 107, 3904.
- 4 a) A. Ishihara, K. Lee, S. Doi, S. Mitsushima, N. Kamiya, M. Hara, K. Domen, K. Fukuda, K. Ota, Electrochem. Solid-State Lett. 2005, 8, A201. b) Y. Shibata, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, Electrochem. Solid-State Lett. 2007, 10, B43.
- 5 S. Doi, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, J. Electrochem. Soc. 2007, 154, B362.
- 6 Y. Liu, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, Electrochem. Solid-State Lett. 2005, 8, A400.
- 7 J.-H. Kim, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, Electrochim. Acta 2007, 52, 2492.
- 8 G. Liu, H. M. Zhang, M. R. Wang, H. X. Zhong, J. Chen, J. Power Sources 2007, 172, 503.
- M. Grundner, J. Halbritter, *J. Appl. Phys.* **1980**, 51, 397.
- 10 a) J. Halbritter, J. Less Common Met. 1988, 139, 133. b) V. A. Logacheva, N. A. Divakova, Y. A. Tikhonova, E. A. Dolgopolova, A. M. Khoviv, Inorg. Mater. 2007, 43, 1230.
- 11 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/.